博客
关于我
程序设计基础80 并查集如何连结数据
阅读量:390 次
发布时间:2019-03-05

本文共 499 字,大约阅读时间需要 1 分钟。

技术分析与代码解读

在社群识别问题中,我们采用了基于兴趣爱好的并查集算法来划分社群。这种方法的核心在于将同一兴趣爱好的人归为同一社群,从而实现自动化的社群划分。

系统的核心逻辑可以分为以下几个步骤:

  • 初始化每个用户为独立的社群
  • 对于每个用户,遍历其所有兴趣爱好,将其与第一个拥有该兴趣爱好的用户建立关联
  • 对于每个兴趣爱好群体,按顺序将用户之间进行合并操作
  • 最后统计每个社群的大小
  • 代码实现采用了并查集(Union-Find)数据结构,这种算法在处理连通性问题上具有较高的效率。通过路径压缩和按秩合并优化,可以保证操作的接近线性时间复杂度。

    代码的主要结构包括以下几个部分:

    • 并查集函数实现
    • 输入处理与数据结构初始化
    • 聊天数据提取与处理
    • 社群合并过程
    • 结果统计与输出

    优化点:

  • 在兴趣爱好处理部分,采用了直接记录第一个拥有该兴趣爱好的用户的方式,简化了后续的合并操作
  • 在合并过程中,避免了冗余的查找操作,直接将兴趣爱好的用户与已有社群关联
  • 结果统计采用了基于数组的计数方法,保证了高效性和空间复杂度
  • 通过这种方法,我们能够快速准确地识别出所有存在社群关系的人群,并输出所需的社群数量及每个社群的人数。

    转载地址:http://nmlwz.baihongyu.com/

    你可能感兴趣的文章
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>