博客
关于我
程序设计基础80 并查集如何连结数据
阅读量:390 次
发布时间:2019-03-05

本文共 499 字,大约阅读时间需要 1 分钟。

技术分析与代码解读

在社群识别问题中,我们采用了基于兴趣爱好的并查集算法来划分社群。这种方法的核心在于将同一兴趣爱好的人归为同一社群,从而实现自动化的社群划分。

系统的核心逻辑可以分为以下几个步骤:

  • 初始化每个用户为独立的社群
  • 对于每个用户,遍历其所有兴趣爱好,将其与第一个拥有该兴趣爱好的用户建立关联
  • 对于每个兴趣爱好群体,按顺序将用户之间进行合并操作
  • 最后统计每个社群的大小
  • 代码实现采用了并查集(Union-Find)数据结构,这种算法在处理连通性问题上具有较高的效率。通过路径压缩和按秩合并优化,可以保证操作的接近线性时间复杂度。

    代码的主要结构包括以下几个部分:

    • 并查集函数实现
    • 输入处理与数据结构初始化
    • 聊天数据提取与处理
    • 社群合并过程
    • 结果统计与输出

    优化点:

  • 在兴趣爱好处理部分,采用了直接记录第一个拥有该兴趣爱好的用户的方式,简化了后续的合并操作
  • 在合并过程中,避免了冗余的查找操作,直接将兴趣爱好的用户与已有社群关联
  • 结果统计采用了基于数组的计数方法,保证了高效性和空间复杂度
  • 通过这种方法,我们能够快速准确地识别出所有存在社群关系的人群,并输出所需的社群数量及每个社群的人数。

    转载地址:http://nmlwz.baihongyu.com/

    你可能感兴趣的文章
    NuttX 构建系统
    查看>>
    NutUI:京东风格的轻量级 Vue 组件库
    查看>>
    NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
    查看>>
    NutzWk 5.1.5 发布,Java 微服务分布式开发框架
    查看>>
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    Nuxt Time 使用指南
    查看>>
    NuxtJS 接口转发详解:Nitro 的用法与注意事项
    查看>>
    NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
    查看>>
    NVelocity标签使用详解
    查看>>
    NVelocity标签设置缓存的解决方案
    查看>>
    Nvidia Cudatoolkit 与 Conda Cudatoolkit
    查看>>
    NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
    查看>>
    nvidia 各种卡
    查看>>
    NVIDIA-cuda-cudnn下载地址
    查看>>
    nvidia-htop 使用教程
    查看>>
    nvidia-smi 参数详解
    查看>>
    Nvidia驱动失效,采用官方的方法重装更快
    查看>>
    nvmw安装node-v4.0.0之后版本的临时解决办法
    查看>>
    nvm切换node版本
    查看>>
    nvm安装 出现 Error retrieving “http://xxxx/SHASUMS256.txt“: HTTP Status 404 解决方法
    查看>>